The equations are

$$
-0.2577 X+0.0 Y+1.0000 Z=0.0
$$

for BD and

$$
-0 \cdot 2547 X+0 \cdot 0 Y+1 \cdot 0000 Z=3 \cdot 238
$$

for TCNQ, where X, Y and Z are coordinates in \AA with respect to the crystal axes a, b and c. The planes of BD and TCNQ make an angle of 0.2°.

Discussion. BD and TCNQ form solid molecular complexes which contain solvent molecules in the crystal lattice as well as the solvent-free complex. The structure of the BD-TCNQ complex containing dichloromethane has already been reported (Ikemoto, Chikaishi, Yakushi \& Kuroda, 1972). In the solvent-free crystal, the relative orientation of the donor and acceptor molecules within a BD-TCNQ column is the same as that in the dichloromethane-containing crystal, but these molecular columns are closely packed without leaving space to accommodate solvent molecules.

In the solvent-containing crystals, there exist two kinds of specific interaction between BD and TCNQ: the charge-transfer interaction and the hydrogen bonding. The former is reflected in the formation of the BD-TCNQ column, and the latter gives the infinite hydrogen-bonded sheet parallel to the (001)
plane. In the solvent-free crystal, however, there is no indication of the hydrogen bonding between BD and TCNQ. Although all molecular planes are parallel to the ($10 \overline{2}$) plane, which is perpendicular to the c axis, the molecular columns lying at $y=\frac{1}{2}$ are shifted by $c / 4$ along the c axis, so that the molecules shown by broken lines in Fig. 2 are not on the same plane as those shown by solid lines.

The bond lengths of TCNQ in the solvent-free complex are in good agreement with those in the TCNQ crystal (Long, Sparks \& Trueblood, 1965). This implies that TCNQ is in the non-ionic state in this complex.

The computer used in this work was the HITAC 5020 E at the Computer Centre, University of Tokyo. The program used were the UNICS program (1967).

References

Iкemoto, I., Chikaishi, K., Yakushi, K. \& Kuroda, H. (1972). Acta Cryst. B28, 3502-3506.

Grant, D. F., Killean, R. C. G. \& Lawrence, J. L. (1969). Acta Cryst. B25, 374-376.
Long, R. E., Sparks, R. A. \& Trueblood, K. N. (1965). Acta Cryst. 18, 932-939.
UNICS (1967). Universal Crystallographic Computation Program System. Edited by T. Sakurai. Tokyo: The Crystallographic Society of Japan.

SHORT COMMUNICATIONS

Abstract

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1974). B30, 837
The crystal and molecular structure of 1-kestose: a correction. By G. A. Jeffrey and Young Ja Park, Department of Crystallography, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.
(Received 14 December 1973)
In Table 1 of Jeffrey \& Park [Acta Cryst. (1972). B28, 257-267], the $\mathrm{C}^{\prime}(3) x$ coordinate should read - 779 instead of -9 .

The correction of a typographical error: In the paper on $1-$ kestose by Jeffrey \& Park (1972), Table 1, the $C^{\prime}(3) x$ coordinate should read -779 , instead of -9 . All numbers derived using this parameter are correct.

Reference

Jeffrey, G. A. \& Park, Y. J. (1972). Acta Cryst. B28, 257267.

